domingo, 8 de mayo de 2011

Tarea....

<> <> <> <>

LAS ONDAS Y SUS CARACTERÍSTICAS



Definición y características


Longitud de onda, frecuencia y período


Pulso y tren de ondas


Genera ondas o pulsos en una cuerda tensa


Tipos de ondas


Olas en la superficie del mar




Definición

Una onda es una perturbación que se propaga desde el punto en que se produjo hacia el medio que rodea ese punto.

Las ondas materiales (todas menos las electromagnéticas) requieren un medio elástico para propagarse.

El medio elástico se deforma y se recupera vibrando al paso de la onda.

 

La perturbación comunica una agitación a la primera partícula del medio en que impacta -este es el foco de las ondas- y en esa partícula se inicia la onda.

La perturbación se transmite en todas las direcciones por las que se extiende el medio que rodea al foco con una velocidad constante en todas las direcciones, siempre que el medio sea isótropo ( de iguales características físico- químicas en todas las direcciones ).

Todas las partículas del medio son alcanzadas con un cierto retraso respecto a la primera y se ponen a vibrar: recuerda la ola de los espectadores en un estadio de fútbol.



La forma de la onda es la foto de la perturbación propagándose, la instantánea que congela las posiciones de todas las partículas en ese instante.

Curiosamente, la representación de las distancias de separación de la posición de equilibrio de las partículas al vibrar frente al tiempo dan una función matemática seno que, una vez representada en el papel, tiene forma de onda.

Podemos predecir la posición que ocuparán dichas partículas más tarde, aplicando esta función matemática.

El movimiento de cada partícula respecto a la posición de equilibrio en que estaba antes de llegarle la perturbación es un movimiento vibratorio armónico simple.



Una onda transporta energía y cantidad de movimiento pero no transporta materia: las partículas vibran alrededor de la posición de equilibrio pero no viajan con la perturbación.



Veamos un ejemplo: la onda que transmite un látigo lleva una energía que se descarga al golpear su punta. Las partículas del látigo vibran, pero no se desplazan con la onda.

Las partículas perturbadas por la onda sufren unas fuerzas variables en dirección e intensidad que les producen una aceleración variable y un M.A.S.

Pulso y tren de ondas

El movimiento de cualquier objeto material en un medio (aire, agua, etc) puede ser considerado como una fuente de ondas. Al moverse perturba el medio que lo rodea y esta perturbación, al propagarse, puede originar un pulso o un tren de ondas.

Un impulso único, una vibración única en el extremo de una cuerda, al propagarse por ella origina un tipo de onda llamada pulso. Las partículas oscilan una sola vez al paso del pulso, transmiten la energía y se quedan como estaban inicialmente. El pulso sólo está un tiempo en cada lugar del espacio. El sonido de un disparo es un pulso de onda sonora.

Si las vibraciones que aplicamos al extremo de la cuerda se suceden de forma continuada se forma un tren de ondas que se desplazará a lo largo de la cuerda.


Pulsa aquí y prueba a generar pulsos y ondas


Tipos de ondas: ondas transversales y ondas longitudinales

 

En función del tipo de soporte que requieren para su propagación las ondas se clasifican en mecánicas y electromagnéticas. Las mecánicas requieren un medio elástico para propagarse y las electromagnéticas no, se pueden propagar en el vacío.

Si las clasificamos en función de como vibran respecto a la dirección de propagación tenemos las ondas transversales y las longitudinales.

 

Si las partículas del medio en el que se propaga la perturbación vibran perpendicularmente a la dirección de propagación las ondas se llaman transversales. Si vibran en la misma dirección se llaman longitudinales.




Aceptaremos que la forma de los pulsos no varía durante la propagación, lo cual sólo es sólo cierto para las ondas electromagnéticas propagándose en el vacío. Las demás ondas se atenúan.

Vamos a referirnos únicamente a ondas cuyos pulsos pueden ser descritos por las funciones matemáticas seno y coseno. Lamamos a estas ondas ondas armónicas. Las partículas del medio en que se propaga una ondas transversal (en este caso las de la cuerda) vibran perpendicularmente a la posición inicial de la cuerda, separándose de la posición inicial, subiendo y bajando con un movimiento vibratorio armónico simple.

La separación de la posición de equilibrio responde a la fórmula y(t )=A· sen (w t), donde A es la amplitud o separación máxima. La velocidad de vibración de las partículas es variable ( v=A ·w·cos wt ), perpendicular a la dirección de propagación y diferente de la velocidad de propagación del pulso (V) que es constante.

Las ondas tranversales tienen crestas y valles y las longitudinales tienen compresiones y dilataciones. En los dos tipos de ondas una partícula siempre se separa armónicamente de la posición de equilibrio.

Si una onda interfiere con otra en determinados puntos puede ocurrir que se anule la vibración formándose un nodo (mira el dibujo animado del inicio de la página que representa la onda estacionaria en una cuerda).

Las ondas longitudinales (como las del sonido) se propagan en medios con resistencia a la compresión (gases, líquidos y sólidos) y las transversales necesitan medios con resistencia a la flexión, como la superficie de un líquido, y en general medios rígidos. Los gases y los líquidos no transmiten las ondas transversales.

Longitud de onda, frecuencia y periodo

Se define la longitud de onda, l, como la distancia que recorre el pulso mientras un punto realiza una oscilación completa. El tiempo que tarda en realizar una oscilación se llama periodo ( T ) y la frecuencia ( n ) es el número de oscilaciones (vibraciones) que efectúa cualquier punto de la onda en un segundo.

 


Pulsa aquí para ver la relación entre la longitud de onda y la frecuencia


Las ondas viajeras a lo largo de una cuerda son ondas unidimensionales y, como todas las ondas, realizan una transmisión de energía y cantidad de movimiento sin transporte de materia.

Cuando dos ondas se cruzan se producen los fenómenos de interferencia que afectan a las partículas que están en el cruce pero no a las ondas, de manera que cada una sigue su camino sin alterar ninguna de sus características ni el valor de la energía transportada.

QUE ES UN PISTON

Realiza, observa y comprueba lo anterior en la propagación de una
onda en una cuerda tensa.


También puedes observar, pulsando aquí, como son las ondas que dan lugar a las olas del mar


Se denomina pistón a uno de los elementos básicos del motor de combustión interna.


Se trata de un émbolo que se ajusta al interior de las paredes del cilindro mediante aros flexibles llamados segmentos o anillos. Efectúa un movimiento alternativo, obligando al fluido que ocupa el cilindro a modificar su presión y volumen o transformando en movimiento el cambio de presión y volumen del fluido.


A través de la articulación de biela y cigüeñal, su movimiento alternativo se transforma en rotativo en este último.




Esquema simplificado del movimiento pistón/biela

Puede formar parte de
bombas, compresores y motores. Se construye normalmente en aleación de aluminio.


Los pistones de motores de combustión interna tienen que soportar grandes temperaturas y presiones, además de velocidades y aceleraciones muy altas. Debido a estos se escogen aleaciones que tengan un peso específico bajo para disminuir la energía cinética que se genera en los desplazamientos. También tienen que soportar los esfuerzos producidos por las velocidades y dilataciones. El material más elegido para la fabricación de pistones es el aluminio y suelen utilizarse aleantes como: cobre, silicio, magnesio y manganeso entre otros


Tipos de Pistones



El pistón es un cilindro abierto por su base inferior, cerrado en la superior y sujeto a la biela en su parte intermedia. El movimiento del pistón es hacia arriba y abajo en el interior del cilindro, comprime la mezcla, transmite la presión de combustión al cigüeñal a través de la biela, fuerza la salida de los gases resultantes de la combustión en la carrera de escape y produce un vacío en el cilindro que "aspira" la mezcla en la carrera de aspiración.

El pistón, que a primera vista puede parecer de las piezas mas simples, ha sido y es una de las que ha obligado a un mayor estudio. Debe ser ligero, de forma que sean mínimas las cargas de inercia, pero a su vez debe ser lo suficientemente rígido y resistente para soportar el calor y la presión desarrollados en el interior de l la cámara de combustión.

Veamos en esta oportunidad algunos tipos de pistones Sealed Power de Federal Mogul que les proporcionará una mejor comprensión de las características, beneficios y materiales de estos pistones para su correcta aplicación.

Comenzaremos por los materiales. Los pistones de los motores actuales usan como elemento principal el aluminio, por ser un metal con amplias cualidades.

En la fabricación de los pistones, al aluminio se le agregan otros elementos para obtener formulas adecuadas que proporcionan las características particulares necesarias según el tipo y aplicación del motor. Estas aleaciones son las que permiten obtener un producto de alta calidad como es el caso de los pistones Sealed Power.

Pistones de aluminio fundido (Sufijos P, NP)

Uno de los procesos más antiguos y aún vigente, es el de la fundición de lingotes de aluminio en grandes Crisoles (donde se calientan los metales hasta que se funden o pasan de sólido a líquido) que luego se vacían en moldes enfriados por agua bajo sistemas especiales.





Pistones forjados a presión (Sufijo F)



de  uso  diario  como  de  trabajos  pesados  e  incluso  en  los motores de autos de competencias (figura 1).



Pistones Hipereutecticos (Prefijo H)

Estos pistones son fabricados con modernos sistemas de la más alta tecnología metalúrgica en la cual se emplean nuevas formulaciones que permiten agregar una mayor cantidad de silicio, lográndose una expansión molecular uniforme de los elementos utilizados en su composición. Esta técnica de manufactura proporciona a éstos pistones características especiales, tales como soportar mayor fuerza, resistencia y control de la dilatación a temperaturas altas, disminuyendo el riesgo de que el pistón se pegue o agarre en el cilindro, la vida útil es



Pistones con capa de recubrimiento (Sufijo C)



Los primeros minutos de funcionamiento de un motor nuevo o reparado son cruciales para la vida del motor. Los pistones de la marca

Este proceso patentado por Sealed Power extiende la vida útil de los motores que lo usan, evita que los pistones se rayen, ayuda a prevenir daños por la lubricación inadecuada y mejora el sellado de los pistones.

También se usan los pistones sin recubrimiento que tienen una apariencia brillante por el color del aluminio al ser maquinado (figura 1).


Péndulo simple en movimiento armónico con oscilaciones pequeñas.

El péndulo (del lat. pendŭlus, pendiente) es un sistema físico que puede
oscilar bajo la acción gravitatoria u otra característica física (elasticidad, por ejemplo) y que está configurado por una masa suspendida de un punto o de un eje horizontal fijos mediante un hilo, una varilla, u otro dispositivo.


Existen muy variados tipos de péndulos que, atendiendo a su configuración y usos, reciben los nombres apropiados: péndulo simple, péndulo compuesto, péndulo cicloidal, doble péndulo, péndulo de Foucault, péndulo de Newton, péndulo balístico, péndulo de torsión, péndulo esférico, etcétera.


Sus usos son muy variados: Medida del tiempo (reloj de péndulo, metrónomo,...), medida de la intensidad de la gravedad,...

<> <> <>




Componentes del peso de la masa pendular.

También llamado péndulo ideal, está constituido por un hilo inextensible de masa despreciable, sostenido por su extremo superior de un punto fijo, con una
masa puntual sujeta en su extremo inferior que oscila libremente en un plano vertical fijo.


Al separar la masa pendular de su punto de equilibrio, oscila a ambos lados de dicha posición, desplazándose sobre una trayectoria circular con movimiento periódico.


Ecuación del movimiento

Para escribir la ecuación del movimiento, observaremos la figura adjunta, correspondiente a una posición genérica del péndulo. La flecha azul representa el
peso de la masa pendular. Las flechas en color violeta representan las componentes del peso en las direcciones tangencial y normal a la trayectoria.


Aplicando la Segunda ley de Newton en la dirección del movimiento, tenemos




donde el signo negativo tiene en cuenta que la Ft tiene dirección opuesta a la del desplazamiento angular positivo (hacia la derecha, en la figura). Considerando la relación existente entre la aceleración tangencial y la aceleración angular



obtenemos finalmente la
ecuación diferencial del movimiento plano del péndulo simple


 

Período de oscilación




Factor de amplificación del período de un péndulo, para una amplitud angular cualquiera. Para ángulos pequeños el factor vale aproximadamente 1 pero tiende a infinito para ángulos cercanos a π (180º).

El astrónomo y físico
italiano Galileo Galilei, observó que el periodo de oscilación es independiente de la amplitud, al menos para pequeñas oscilaciones. En cambio, éste depende de la longitud del hilo. El período de la oscilación de un péndulo simple restringido a oscilaciones de pequeña amplitud puede aproximarse por:


 

Para oscilaciones mayores la relación exacta para el período no es constante con la amplitud e involucra
integrales elípticas de primera especie:


 

Donde φ0 es la amplitud angular máxima. La ecuación anterior puede desarrollarse en
serie de Taylor obteniéndose una expresión más útil:


 

[
editar] Solución de la ecuación de movimiento




Para pequeñas oscilaciones la amplitud es casi senoidal, para amplitudes más grandes la oscilación ya no es senoidal. La figura muestra un movimiento de gran amplitud φ0 = 0,999π (negro), junto a un movimiento de pequeña amplitud φ0 = 0,25π (gris).

Para amplitudes pequeñas, la oscilación puede aproximarse como combinación lineal de funciones trigonométricas. Para amplitudes grandes puede probarse el ángulo puede expresarse como combinación lineal de
funciones elípticas de Jacobi. Para ver esto basta tener en cuenta que la energía constituye una integral de movimiento y usar el método de la cuadratura para integrar la ecuación de movimiento:


Donde, en la última expresión se ha usado la fórmula del ángulo doble y donde además:



El lagrangiano del sistema es , donde θ es el ángulo que forma la cuerda del péndulo a lo largo de sus oscilaciones (es la variable), y l es la longitud de la cuerda (es la ligadura). Si se aplican las ecuaciones de Lagrange se llega a la ecuación final del movimiento: . Es decir, la masa no influye en el movimiento de un péndulo Péndulo esférico





Péndulo esférico animado.


Un péndulo esférico es un sistema con dos grados de libertad. El movimiento está confinado a la una porción de superficie esférica (de radio l) comprendida entre dos paralelos. Existen dos integrales de movimiento, la energía E y la componente del momento angular paralela al eje vertical Mz. La función HYPERLINK "http://es.wikipedia.org/wiki/Lagrangiano"lagrangiana viene dada por:


 

Donde φ es el ángulo polar y θ es el ángulo que forma el hilo o barra del péndulo con la vertical. Las ecuaciones de movimiento, obtenidas introduciendo el lagrangiano anterior en las
ecuaciones de HYPERLINK "http://es.wikipedia.org/wiki/Ecuaciones_de_Euler-Lagrange"Euler-Lagrange son:


 

La segunda ecuación expresa la constancia de la componente Z del momento angular y por tanto lleva a la relación entre la velocidad de giro polar y el momento angular y por tanto a reescribir la lagrangiana como:



Y el problema queda reducido a un problema unidimensional.

Período

El movimiento de un péndulo esférico en general no resulta periódico, ya que es la combinación de dos
movimientos periódicos de períodos generalmente incomensurables. Sin embargo el movimiento resulta cuasiperiódico, lo cual significa que fijado una posición y una velocidad previas del movimiento existe un tiempo T tal que el movimiento pasará a una distancia tan pequeña como se desee de esa posición con una velocidad tan parecida como se quiera, pero sin repetirse exactamente. Dada que la región de movimiento además resulta compacta, el conjunto de puntos la trayectoria de un péndulo esférico constituye un conjunto denso sobre una área esférica comprendida entre dos casquetes esféricos.


Solución de la ecuación de movimiento

Las ecuaciones de movimiento pueden expresarse en términos de integrales elípticas de
primera especie y tercera especie:


 

Tarea..

<> <> <> <> <> <> <> <>


LAS ONDAS Y SUS CARACTERÍSTICAS


Onda estacionaria (el nodo no vibra)



Definición y características


Longitud de onda, frecuencia y período


Pulso y tren de ondas


Genera ondas o pulsos en una cuerda tensa


Tipos de ondas


Olas en la superficie del mar


 


Definición


Una onda es una perturbación que se propaga desde el punto en que se produjo hacia el medio que rodea ese punto.

Las ondas materiales (todas menos las electromagnéticas) requieren un medio elástico para propagarse.



El medio elástico se deforma y se recupera vibrando al paso de la onda.




La perturbación comunica una agitación a la primera partícula del medio en que impacta -este es el foco de las ondas- y en esa partícula se inicia la onda.

La perturbación se transmite en todas las direcciones por las que se extiende el medio que rodea al foco con una velocidad constante en todas las direcciones, siempre que el medio sea isótropo ( de iguales características físico- químicas en todas las direcciones ).

Todas las partículas del medio son alcanzadas con un cierto retraso respecto a la primera y se ponen a vibrar: recuerda la ola de los espectadores en un estadio de fútbol.



La forma de la onda es la foto de la perturbación propagándose, la instantánea que congela las posiciones de todas las partículas en ese instante.


Curiosamente, la representación de las distancias de separación de la posición de equilibrio de las partículas al vibrar frente al tiempo dan una función matemática seno que, una vez representada en el papel, tiene forma de onda.

Podemos predecir la posición que ocuparán dichas partículas más tarde, aplicando esta función matemática.

El movimiento de cada partícula respecto a la posición de equilibrio en que estaba antes de llegarle la perturbación es un movimiento vibratorio armónico simple.



Una onda transporta energía y cantidad de movimiento pero no transporta materia: las partículas vibran alrededor de la posición de equilibrio pero no viajan con la perturbación.



 


Veamos un ejemplo: la onda que transmite un látigo lleva una energía que se descarga al golpear su punta. Las partículas del látigo vibran, pero no se desplazan con la onda.
Las partículas perturbadas por la onda sufren unas fuerzas variables en dirección e intensidad que les producen una aceleración variable y un M.A.S.


Pulso y tren de ondas


El movimiento de cualquier objeto material en un medio (aire, agua, etc) puede ser considerado como una fuente de ondas. Al moverse perturba el medio que lo rodea y esta perturbación, al propagarse, puede originar un pulso o un tren de ondas.

Un impulso único, una vibración única en el extremo de una cuerda, al propagarse por ella origina un tipo de onda llamada pulso. Las partículas oscilan una sola vez al paso del pulso, transmiten la energía y se quedan como estaban inicialmente. El pulso sólo está un tiempo en cada lugar del espacio. El sonido de un disparo es un pulso de onda sonora.

Si las vibraciones que aplicamos al extremo de la cuerda se suceden de forma continuada se forma un tren de ondas que se desplazará a lo largo de la cuerda.


Pulsa aquí y prueba a generar pulsos y ondas


Tipos de ondas: ondas transversales y ondas longitudinales




En función del tipo de soporte que requieren para su propagación las ondas se clasifican en mecánicas y electromagnéticas. Las mecánicas requieren un medio elástico para propagarse y las electromagnéticas no, se pueden propagar en el vacío.


Si las clasificamos en función de como vibran respecto a la dirección de propagación tenemos las ondas transversales y las longitudinales.




Si las partículas del medio en el que se propaga la perturbación vibran perpendicularmente a la dirección de propagación las ondas se llaman transversales. Si vibran en la misma dirección se llaman longitudinales.




Aceptaremos que la forma de los pulsos no varía durante la propagación, lo cual sólo es sólo cierto para las ondas electromagnéticas propagándose en el vacío. Las demás ondas se atenúan.

Vamos a referirnos únicamente a ondas cuyos pulsos pueden ser descritos por las funciones matemáticas seno y coseno. Lamamos a estas ondas ondas armónicas. Las partículas del medio en que se propaga una ondas transversal (en este caso las de la cuerda) vibran perpendicularmente a la posición inicial de la cuerda, separándose de la posición inicial, subiendo y bajando con un movimiento vibratorio armónico simple.

La separación de la posición de equilibrio responde a la fórmula y(t )=A· sen
 t), donde A es la amplitud o separación máxima. La velocidad de vibración de las partículas es variable ( v=A ·cos t ), perpendicular a la dirección de propagación y diferente de la velocidad de propagación del pulso (V) que es constante.


Las ondas tranversales tienen crestas y valles y las longitudinales tienen compresiones y dilataciones. En los dos tipos de ondas una partícula siempre se separa armónicamente de la posición de equilibrio.

Si una onda interfiere con otra en determinados puntos puede ocurrir que se anule la vibración formándose un nodo (mira el dibujo animado del inicio de la página que representa la onda estacionaria en una cuerda).

Las ondas longitudinales (como las del sonido) se propagan en medios con resistencia a la compresión (gases, líquidos y sólidos) y las transversales necesitan medios con resistencia a la flexión, como la superficie de un líquido, y en general medios rígidos. Los gases y los líquidos no transmiten las ondas transversales.



Longitud de onda, frecuencia y periodo


Se define la longitud de onda, como la distancia que recorre el pulso mientras un punto realiza una oscilación completa. El tiempo que tarda en realizar una oscilación se llama periodo ( T ) y la frecuencia ( ) es el número de oscilaciones (vibraciones) que efectúa cualquier punto de la onda en un segundo.




Pulsa aquí para ver la relación entre la longitud de onda y la frecuencia


Las ondas viajeras a lo largo de una cuerda son ondas unidimensionales y, como todas las ondas, realizan una transmisión de energía y cantidad de movimiento sin transporte de materia.


Cuando dos ondas se cruzan se producen los fenómenos de interferencia que afectan a las partículas que están en el cruce pero no a las ondas, de manera que cada una sigue su camino sin alterar ninguna de sus características ni el valor de la energía transportada.


QUE ES UN PISTON


Realiza, observa y comprueba lo anterior en la propagación de una
onda en una cuerda tensa.


También puedes observar, pulsando aquí, como son las ondas que dan lugar a las olas del mar


Se denomina pistón a uno de los elementos básicos del motor de combustión interna.


Se trata de un émbolo que se ajusta al interior de las paredes del cilindro mediante aros flexibles llamados segmentos o anillos. Efectúa un movimiento alternativo, obligando al fluido que ocupa el cilindro a modificar su presión y volumen o transformando en movimiento el cambio de presión y volumen del fluido.


A través de la articulación de biela y cigüeñal, su movimiento alternativo se transforma en rotativo en este último.







Esquema simplificado del movimiento pistón/biela

Puede formar parte de
bombas, compresores y motores. Se construye normalmente en aleación de aluminio.


Los pistones de motores de combustión interna tienen que soportar grandes temperaturas y presiones, además de velocidades y aceleraciones muy altas. Debido a estos se escogen aleaciones que tengan un peso específico bajo para disminuir la energía cinética que se genera en los desplazamientos. También tienen que soportar los esfuerzos producidos por las velocidades y dilataciones. El material más elegido para la fabricación de pistones es el aluminio y suelen utilizarse aleantes como: cobre, silicio, magnesio y manganeso entre otros


Tipos de Pistones



               El pistón es un cilindro abierto por su base inferior, cerrado en la superior y sujeto a la biela en su parte intermedia. El movimiento del pistón es hacia arriba y abajo en el interior del cilindro, comprime la mezcla, transmite la presión de combustión al cigüeñal a través de la biela, fuerza la salida de los gases resultantes de la combustión en la carrera de escape y produce un vacío en el cilindro que "aspira" la mezcla en la carrera de aspiración.


               El pistón, que a primera vista puede parecer de las piezas mas simples, ha sido y es una de las que ha obligado a un mayor estudio. Debe ser ligero, de forma que sean mínimas las cargas de inercia, pero a su vez debe ser lo suficientemente rígido y resistente para soportar el calor y la presión desarrollados en el interior de l la cámara de combustión.

Veamos en esta oportunidad algunos tipos de pistones Sealed Power de Federal Mogul que les proporcionará una mejor comprensión de las características, beneficios y materiales de estos pistones para su correcta aplicación.

Comenzaremos por los materiales. Los pistones de los motores actuales usan como elemento principal el aluminio, por ser un metal con amplias cualidades.

En la fabricación de los pistones, al aluminio se le agregan otros elementos para obtener formulas adecuadas que proporcionan las características particulares necesarias según el tipo y aplicación del motor. Estas aleaciones son las que permiten obtener un producto de alta calidad como es el caso de los pistones Sealed Power.


Pistones de aluminio fundido (Sufijos P, NP)



               Uno de los procesos más antiguos y aún vigente, es el de la fundición de lingotes de aluminio en grandes Crisoles (donde se calientan los metales hasta que se funden o pasan de sólido a líquido) que luego se vacían en moldes enfriados por agua bajo sistemas especiales.
 

<> <> <> <>

                Posteriormente, comienza el proceso de mecanizado, efectuado por diferentes maquinarias controladas por computadoras y por último pasan por una serie de procesos térmicos que les dan las propiedades requeridas por las empresas fabricantes de equipo original. Estos mismos pistones de la marca Sealed Power son los que tienen los vehículos que salen de la fabrica y son los mismos ofrecidos en las repuesteras como piezas de reposición. 


Figura 1



 
Pistones forjados a presión (Sufijo F)



<> <> <> <>

               En éste proceso se utilizan trozos de barras de aleaciones de aluminio cortados a la medida y sometidos a presiones de hasta 3000 toneladas de fuerza, En los troqueles se forja con exactitud las dimensiones del pistón y las ranuras de los anillos con maquinados a precisión para brindar optima calidad y confiabilidad en el uso de estos, tanto en motores


Figura 2



de  uso  diario  como  de  trabajos  pesados  e  incluso  en  los motores de autos de competencias (figura 1).


Pistones Hipereutecticos (Prefijo H)


               Estos pistones son fabricados con modernos sistemas de la más alta tecnología metalúrgica en la cual se emplean nuevas formulaciones que permiten agregar una mayor cantidad de silicio, lográndose una expansión molecular uniforme de los elementos utilizados en su composición. Esta técnica de manufactura proporciona a éstos pistones características especiales, tales como soportar mayor fuerza, resistencia y control de la dilatación a temperaturas altas, disminuyendo el riesgo de que el pistón se pegue o agarre en el cilindro, la vida útil es

<> <> <> <>

mayor ya que las ranuras de los anillos y el orificio del pasador del pistón son más duraderas, además se pueden instalar en los nuevos motores e igualmente se usan en motores de años anteriores. Esta particular tecnología de los pistones Sealed Power se impone en especial para las nuevas generaciones de motores de alta compresión. Al usar pistones con prefijo "H" su reparación será confiable (figura 2).



Figura 3



 
Pistones con capa de recubrimiento (Sufijo C)
 
               Los primeros minutos de funcionamiento de un motor nuevo o reparado son cruciales para la vida del motor. Los pistones de la marca

<> <> <> <>

Sealed Power han estado a la vanguardia de la tecnología del recubrimiento de las faldas del pistón. Inicialmente se utilizó el estaño (éste le da un color opaco figura 3) pero por ser nocivo a la salud ha sido eliminado por los fabricantes de pistones. En sustitución se está aplicando el nuevo recubrimiento anti-fricción compuesto por molibdeno y grafito en las faldas (dándole un color negro, figura 4).


Figura 4



               Este proceso patentado por Sealed Power extiende la vida útil de los motores que lo usan, evita que los pistones se rayen, ayuda a prevenir daños por la lubricación inadecuada y mejora el sellado de los pistones.


               También se usan los pistones sin recubrimiento que tienen una apariencia brillante por el color del aluminio al ser maquinado (figura 1).



PENDULO






Péndulo simple en movimiento armónico con oscilaciones pequeñas.


El péndulo (del lat. pendŭlus, pendiente) es un sistema físico que puede
oscilar bajo la acción gravitatoria u otra característica física (elasticidad, por ejemplo) y que está configurado por una masa suspendida de un punto o de un eje horizontal fijos mediante un hilo, una varilla, u otro dispositivo.


Existen muy variados tipos de péndulos que, atendiendo a su configuración y usos, reciben los nombres apropiados: péndulo simple, péndulo compuesto, péndulo cicloidal, doble péndulo, péndulo de Foucault, péndulo de Newton, péndulo balístico, péndulo de torsión, péndulo esférico, etcétera.


Sus usos son muy variados: Medida del tiempo (reloj de péndulo, metrónomo,...), medida de la intensidad de la gravedad,...

<> <> <>




Artículo principal: Péndulo simple






Componentes del peso de la masa pendular.


También llamado péndulo ideal, está constituido por un hilo inextensible de masa despreciable, sostenido por su extremo superior de un punto fijo, con una masa puntual sujeta en su extremo inferior que oscila libremente en un plano vertical fijo.


Al separar la masa pendular de su punto de equilibrio, oscila a ambos lados de dicha posición, desplazándose sobre una trayectoria circular con movimiento periódico.


[editar] Ecuación del movimiento


Para escribir la ecuación del movimiento, observaremos la figura adjunta, correspondiente a una posición genérica del péndulo. La flecha azul representa el peso de la masa pendular. Las flechas en color violeta representan las componentes del peso en las direcciones tangencial y normal a la trayectoria.


Aplicando la Segunda ley de Newton en la dirección del movimiento, tenemos





donde el signo negativo tiene en cuenta que la Ft tiene dirección opuesta a la del desplazamiento angular positivo (hacia la derecha, en la figura). Considerando la relación existente entre la aceleración tangencial y la aceleración angular





obtenemos finalmente la
ecuación diferencial del movimiento plano del péndulo simple





[
editar] Período de oscilación






Factor de amplificación del período de un péndulo, para una amplitud angular cualquiera. Para ángulos pequeños el factor vale aproximadamente 1 pero tiende a infinito para ángulos cercanos a
π (180º).


El astrónomo y físico
italiano Galileo Galilei, observó que el periodo de oscilación es independiente de la amplitud, al menos para pequeñas oscilaciones. En cambio, éste depende de la longitud del hilo. El período de la oscilación de un péndulo simple restringido a oscilaciones de pequeña amplitud puede aproximarse por:





Para oscilaciones mayores la relación exacta para el período no es constante con la amplitud e involucra
integrales elípticas de primera especie:





Donde φ0 es la amplitud angular máxima. La ecuación anterior puede desarrollarse en
serie de Taylor obteniéndose una expresión más útil:





[
editar] Solución de la ecuación de movimiento






Para pequeñas oscilaciones la amplitud es casi senoidal, para amplitudes más grandes la oscilación ya no es senoidal. La figura muestra un movimiento de gran amplitud
φ0 = 0,999π (negro), junto a un movimiento de pequeña amplitud φ0 = 0,25π (gris).


Para amplitudes pequeñas, la oscilación puede aproximarse como combinación lineal de funciones trigonométricas. Para amplitudes grandes puede probarse el ángulo puede expresarse como combinación lineal de
funciones elípticas de Jacobi. Para ver esto basta tener en cuenta que la energía constituye una integral de movimiento y usar el método de la cuadratura para integrar la ecuación de movimiento:





Donde, en la última expresión se ha usado la fórmula del ángulo doble y donde además:


, es la energía, que está relacionada con la máxima amplitud .

, es la
energía potencial.



Realizando en variable , la solución de las ecuaciones del movimiento puede expresarse como:





Donde:


, es la
función elíptica de HYPERLINK "http://es.wikipedia.org/wiki/Funci%C3%B3n_el%C3%ADptica_de_Jacobi"Jacobi tipo seno.




El lagrangiano del sistema es , donde θ es el ángulo que forma la cuerda del péndulo a lo largo de sus oscilaciones (es la variable), y l es la longitud de la cuerda (es la ligadura). Si se aplican las ecuaciones de Lagrange se llega a la ecuación final del movimiento: . Es decir, la masa no influye en el movimiento de un péndulo.


[
editar] Péndulo esférico


Artículo principal: Péndulo esférico







Péndulo esférico animado.


Un péndulo esférico es un sistema con dos grados de libertad. El movimiento está confinado a la una porción de superficie esférica (de radio l) comprendida entre dos paralelos. Existen dos integrales de movimiento, la energía E y la componente del momento angular paralela al eje vertical Mz. La función HYPERLINK "http://es.wikipedia.org/wiki/Lagrangiano"lagrangiana viene dada por:





Donde φ es el ángulo polar y θ es el ángulo que forma el hilo o barra del péndulo con la vertical. Las ecuaciones de movimiento, obtenidas introduciendo el lagrangiano anterior en las
ecuaciones de HYPERLINK "http://es.wikipedia.org/wiki/Ecuaciones_de_Euler-Lagrange"Euler-Lagrange son:





La segunda ecuación expresa la constancia de la componente Z del momento angular y por tanto lleva a la relación entre la velocidad de giro polar y el momento angular y por tanto a reescribir la lagrangiana como:





Y el problema queda reducido a un problema unidimensional.

Período


El movimiento de un péndulo esférico en general no resulta periódico, ya que es la combinación de dos movimientos periódicos de períodos generalmente incomensurables. Sin embargo el movimiento resulta cuasiperiódico, lo cual significa que fijado una posición y una velocidad previas del movimiento existe un tiempo T tal que el movimiento pasará a una distancia tan pequeña como se desee de esa posición con una velocidad tan parecida como se quiera, pero sin repetirse exactamente. Dada que la región de movimiento además resulta compacta, el conjunto de puntos la trayectoria de un péndulo esférico constituye un conjunto denso sobre una área esférica comprendida entre dos casquetes esféricos.

Solución de la ecuación de movimiento


Las ecuaciones de movimiento pueden expresarse en términos de integrales elípticas de primera especie y tercera especie: